
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Fine-Grained Access Control in Cloud Computing for Personal

Health Care Domain

Ms.Deepika.S
1
, Ms.Keerthi Sravanthi.G

2
,

Mr.S.Gopalakrishnan

3

1, 2, 3Information Technology, AIHT, Chennai, Tamil Nadu, India

Abstract
Health being the most important assert, it is to be safeguarded

in today’s mechanized life. The maintenance of personal

health and tracking of Personal Health Records(PHR) are of

great importance, as (PHR) is an emerging patient-centric

model of health information exchange, which is often

outsourced to be stored at a third party servers. There have

been wide privacy concerns as personal health information

could be exposed to those third party servers and to

unauthorized parties, malicious threats, and possibility of

hacking. It is necessary to assure the patient’s control over

access to their own PHR’s, it is a promising method to encrypt

the PHRs before outsourcing. In this paper, we propose a

patient-centric framework and mechanisms for data access

control to PHRs stored in semi-trusted servers, such as cloud

servers. To achieve fine-grained and scalable data access

control for PHRs, we use the concept of attribute based

encryption (ABE) techniques to encrypt each patient’s PHR

file using Rijndael Managed algorithm.

Keywords: Personal Health Records, cloud computing, data

privacy, fine grained access control, ABE, Rijndael

Managed algorithm.

1. Introduction

The personal health record (PHR) has emerged as a

patient-centric model of health information exchange in

the recent years. A PHR service allows a patient to

create, manage, and control his personal health data in

one place through the web, which has made the storage,

retrieval, and sharing of the medical information more

efficient. Each patient has the full control of her medical

records and can share her health data with a wide range

of users, including healthcare providers, insurance

providers, family members or friends. Due to the high

cost of building and maintaining specialized data

centers, many PHR services are outsourced to or

provided by third-party service providers, for example,

Microsoft Health Vault. Recently, architectures of

storing PHRs in cloud computing have been proposed.

Even though the PHR services are convenient for

everyone, there are many security and privacy risks

which could be involved. The main concern is about

whether the patients could actually control the sharing

of their sensitive personal health information (PHI),

especially when they are stored on a third-party server

which people may not fully trust. Even though there

exist healthcare regulations such as HIPAA which is

recently amended to incorporate business associates,

cloud providers are usually not covered entities and also

due to the high value of the sensitive PHI, the third-

party storage servers are often the targets of various

malicious behaviors which may lead to exposure of the

PHI so this leads to hacking. Hence, to ensure patient-

centric privacy control over their own PHRs, it is

necessary to have fine-grained data access control

mechanisms for semitrusted servers.

A possible and best approach is to encrypt the data

before storing on the semitrusted servers. The PHR

owner himself should decide in what way he can

encrypt his files and also decide as to which set of users

he can allow to access each of his file. A PHR file

should only be available to the users who are given the

corresponding decryption key, while remaining

confidential to the other users .Also, the patient should

always retain the right to not only grant, but also revoke

access privileges when he feels it is necessary.

However, while achieving the goals, scalability conflicts

may arise. The authorized users may either need to

access the PHR for personal use or professional

purposes. Examples of personal domain are family

members, relatives, friends, and for the professional use,

it can be medical doctors, nurses, pharmacists,

researchers, etc. The professional domain is very wide

or large. In such a case if each owner himself is directly

responsible for managing all the professional users, he

will have to face the key management overhead

problem. Since there are many number of professional

users, it is difficult for an owner to maintain a list of

them and also provide proper write access to each of

them .For example, a hospital may have many doctors ,

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

nurses and other non technical staff and assistants. In

case if all of them have been provided write access to a

patient’s highly confidential or sensitive PHR file, then

it is too difficult for them to maintain order and

accuracy about a patients details. Hence it is very

important to maintain and set privileges and access

policies for the data contributors as to who can edit the

PHR and who cannot. On the other hand, different from

the single data owner scenario considered in most of the

existing works in a PHR system, there are multiple

owners who may encrypt according to their own ways,

possibly using different sets of crypto-graphic keys.

When a patient is not online and if a user want to access

the patients PHR, the accessibility would be limited. An

alternative is to involve a central authority (CA) which

does the key management on behalf of all PHR owners,

but this requires too much trust on a single authority

(i.e., cause the key escrow problem).

In this paper, we focus on addressing the complicated

and challenging key management issues, security

challenges and access privileges that take place in the

patient centric model in which the PHR’s are stored on

semi trusted servers. In order to protect the personal

health data stored on semitrusted servers, we adopt

attribute-based encryption (ABE) as an encryption

primitive. We also use the rijndael algorithm to generate

the public and secret keys for the user for any access.

Using ABE, access policies are expressed based on the

attributes of users or data, which enables a patient to

selectively share his PHR among a set of different users

by encrypting the file under a set of attributes, without

needing to know the entire list of users. Depending on

the number of attributes, the complexities per

encryption, key generation, and decryption varies.

However, to integrate ABE into a large-scale PHR

system, important issues such as scalability in key

management, inefficient on-demand revocation are hard

to solve. To end this, we make the following main

contributions:

1. We propose a multi owner setting framework

for patient-centric secure sharing of PHRs in

cloud computing environments. For combatting

the key management issues, we divide the users

in the system into two types of domains,

namely public domain (PUD) and personal

domain (PSD). Since the majority of users are

professional users, they are managed

distributively by attribute authorities (AA),

while each owner only needs to manage the

keys of a small number of users in her personal

domain. In such a way, our framework

simultaneously handles the sharing of different

types of PHR files, which further involves

minimal key management overhead for both

owners and users in the system. In addition, our

framework implements write, read access

control, and provides break-glass access to

PHRs under emergency situations.

2. In the public domain, we use multiauthority

ABE (MA-ABE) to improve the security and

avoid key escrow problem. Each attribute

authority (AA) in it governs a disjoint subset of

user role attributes, while none of them alone is

able to control the security of the whole

system. We propose mechanisms for key

distribution and encryption so that PHR owners

can specify personalized fine-grained role-

based access policies during file encryption. In

addition to that we have also set permissions as

to who can edit and update information in a

particular PHR. In the personal domain, owners

directly assign access privileges for personal

users and encrypt a PHR file under its data

attributes. Again, over here we have another

problem of security, this is based on the

assumption i,e incase if the personal users

come to know about the PHR owners

password’s then there are chances of editing

the PHR without the knowledge of the owner.

Furthermore, we enhance MA-ABE by putting

forward an efficient and on-demand user/

attribute revocation scheme, and prove its

security under standard security assumptions.

In such a way, patients have full privacy

control over their PHRs.

3. We provide a thorough analysis of the

complexity and scalability of our proposed

secure PHR sharing solution, in terms of

multiple metrics in computation,

communication, storage, and key management.

We also compare our scheme to several

previous ones in complexity, scalability and

security.

Compared with the preliminary version of this paper

there are several main additional contributions:

1) We clarify and extend our usage of MA-ABE in the

public domain, and formally show how and which types

of user-defined file access policies are realized.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

2) We have used the rijndael managed encryption

standard for the benefit that it can encrypt an entire

document at a time rather than as a single string.

3) We also ensure proper write access controls by

providing mutable and immutable forms of the same file

(word, PDF, image etc) to the users request depending

upon their attribute.

4) We provided an additional layer of security for the

personal domain assuming a risk of personal details

being known by the owners personal users.

5) We carry out both real-world experiments and

simulations to evaluate the performance of the proposed

solution in this paper.

2. Framework for fine grained access in

patient - centric, secure and scalable PHR

sharing

In this section, we describe our patient-centric secure

data sharing framework for cloud-based PHR systems.

 2.1 Problem Definition

We consider a PHR system where there are multiple

PHR owners and PHR users. The owners are the

patients who have full control of their own PHR data,

i.e., they can create, modify, manage, and delete it.

There is a central server belonging to the PHR service

provider that stores all the owners PHRs. The users may

come from various aspects; for example, a friend, a

relative, a doctor or a researcher. In order to read or

write to someone’s PHR, users access the PHR

documents through the server and they can

simultaneously have access to multiple owners data. The

main problem over here with the existing system is that

it demands that the key issuing owner or the

organization to be online in case the users need to access

the PHR details. This condition is not considered

favorable as it greatly reduces the accessibility of the

PHR’s. To add to it in the public domain, there where

problem as to which users should be granted the right to

edit the owners PHR file. Secondly there is another

assumption that incase if the personal domain users of

the PHR come in contact to know the confidential keys

or passwords of the PHR owner. A typical PHR system

uses standard data formats. For example, continuity-of-

care (CCR) (based on XML data structure), which is

widely used in representative PHR systems including

Indivo, an open-source PHR system adopted by Boston

Children’s Hospital. Due to the nature of XML, the

PHR files are logically organized by their categories in a

hierarchical way.

2.2 Model of security

In this paper, the server is considered to be semitrusted

by us i.e., honest but curious. That means the server will

try to find out as much secret information in the stored

PHR files as possible, but they will honestly follow the

protocol in general. While some users will also try to

access the files beyond their privileges. For example, a

pharmacy may want to obtain the prescriptions of

patients for marketing and boosting its profits. To do so,

they may interact with other users, or even with the

server. In addition, we assume each party in our system

is preloaded with a public/private key pair, and entity

authentication can be done by traditional challenge-

response protocols.

2.3 Requirements

To achieve “patient-centric” PHR sharing, a core

requirement is that each patient can decide as to who

are authorized to access to h i s own PHR file.

Especially, user-controlled read/write access and

revocation are the two core security objectives for

any electronic health record system. The security

and performance requirements are summarized as

follows:

2.4 Data confidentiality

Unauthorized users (including the server) who do not

possess enough attributes satisfying the access

policy or do not have proper key access privileges

should be prevented from decrypting a PHR

document, even under user collusion. Fine-grained

access control should be enforced, meaning

different users are authorized to read different sets

of documents but write access is given only to

appropriate users.

2.5 On-demand revocation

Whenever a user’s attribute is no longer valid, the

user should not be able to access future PHR files

using that attribute. This is usually called attribute

revocation, and the corresponding security property

is forward secrecy. There is also user revocation,

where all of a user’s access privileges are revoked

and so the previously used secret key cannot be

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

used or is no more valid to read or write

information.

2.6 Write access control

We shall prevent the unauthorized contributors to

gain write-access to t h e owners PHRs, while the

legitimate contributors should access the server with

accountability. On doing so only an appropriate

format of file associated with that particular users

attribute will be download on his/her request. The

data access policies must be flexible, i.e., all dynamic

changes to the predefined policies must be allowed,

especially the PHRs must be accessible under

emergency situations.

2.7 Scalability, efficiency, and usability

The PHR system should support users from both the

personal domain and public domains. Since the set

of users in the public domain may be many in number

and unpredictable, the system should be highly

scalable , in terms of complexity in key

management, communication, and storage.

Furthermore, the owner’s efforts must be

minimized in managing his keys to enjoy usability.

3. Outline of our proposed framework

The main goal of our framework is to provide secure

patient-centric PHR for fine grained access control and

efficient key management at the same time. The main

idea is to divide the system into multiple security

domains (namely, public domains and personal

domains) according to the different user data access

requirements. The PUDs consist of users who make

access based on their professional roles, such as doctors,

nurses, pharmacists and medical researchers. In practice,

a PUD can be mapped to an independent sector in the

society, such as the health care, government, or

insurance sector. For each PSD, the users are personally

associated with a data owner (like friends, relatives,

family members etc), and they make accesses to PHRs

based on access rights allotted by the owner. In both

security domains, we use the concept of ABE.

Especially, in a PUD multi authority ABE (MA-ABE) is

used, in which there are many “attribute authorities”

(AAs), each governing a disjoint subset of attributes.

Role attributes are defined for PUDs, representing the

professional roles. Users in PUDs obtain their attribute-

based secret keys from the AAs, without directly

interacting with the owners since the owners cannot

maintain the complete set of users. To control access

from PUD users, owners are free to specify role-based

fine-grained access policies for his PHR files, when

doing encryption. Since the PUDs have majority of

users, it greatly reduces the key management overhead

for both the owners and users. Every data owner (e.g.,

patient) is a trusted authority of her own PSD, who uses

a KP-ABE system to manage the secret keys and access

rights of users in her PSD. Since the users are personally

known by the PHR owner, to realize patient- centric

access, the owner is at the best position to grant user

access privileges on a case-by-case basis. For PSD, data

attributes are defined which refer to the intrinsic

properties of the PHR data, such as the category of a

PHR file. For the purpose of PSD access, each PHR file

is labeled with its data attributes, while the key size is

only linear with the number of file categories a user can

access. Since the number of users in a PSD is often

small, it reduces the burden for the owner. When

encrypting the data for PSD, all that the owner needs to

know is the intrinsic data properties.

The multi domain approach best models

different user types and access requirements in a PHR

system. The use of ABE makes the encrypted PHRs

self-protective, i.e., they can be accessed by only

authorized users even when storing on a semitrusted

server, and when the owner is not online. In addition,

efficient and on-demand user revocation is made

possible via our ABE enhancement.

3.1 Proposed system – a detailed approach

In our proposed framework, there are multiple SDs,

multiple owners, multiple AAs, multiple users. We term

the users having read access as data readers and write

access as data contributors.

3.2 System setup and key distribution

The system at first defines a common universe of data

attributes that are shared by every PSD, such as “basic

profile,” “allergies,” “medical history,” and

“prescriptions.” An emergency attribute is also defined

for break-glass access. Every PHR owner’s client

application generates its own corresponding

public/master keys. These public keys can be published

via user’s profile in any online like health care social-

network (HSN). There are two ways for distributing

secret keys. At first, when using the PHR service, a

PHR owner can specify the access privilege of a data

reader in his PSD, and let him application generate and

distribute corresponding key to the latter. Secondly, a

reader in PSD could obtain the secret key by sending

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

him a request (indicating which types of files he wants

to access) to the PHR owner via HSN, and the owner

will grant him a subset of requested data types. Based

on this, the policy engine of application automatically

derives an access structure, and runs keygen of the

algorithm to generate the user secret key. In addition,

the data attributes can be organized in a hierarchical

manner for efficient policy generation. When the user is

granted all the file types under a category, his access

privilege will be represented by his category instead.

For PUDs, the system defines role attributes, and a

reader in a PUD obtains secret key from AAs, which

binds the user to his claimed attributes/roles. For

example, a physician in it would receive “hospital B,

physician, M.D., internal medicine” as his attributes

from AAs. In practice, there exist multiple AAs each

governing a different subset of role attributes. For

instance, hospital staffs may have a different AA from

pharmacy specialists. Additionally, the AAs distribute

write keys which permit contributors in their PUD to

write to some patient’s PHR.

Fig.1: A sample PHR hierarchy

3.3 PHR encryption and access

The owners upload ABE encrypted PHR files to the

server (3). Each owner’s PHR file is encrypted both

under a certain fine-grained and role based access policy

for the users from the PUD to access, & under a selected

set of data attributes that allow access from users in the

PSD. Only authorized users can decrypt the PHR files,

excluding the cloud server. For improving efficiency,

the data attributes will include all the intermediate file

types from a leaf node to the root. The data readers

download the PHR files from the server, and they can

decrypt the files only if they have suitable attribute-

based keys (5). The data contributors will be granted the

write access to someone’s PHR, only if they present

proper write keys.

3.4 User revocation

Here, we consider revocation of the data readers or his

attributes/access privileges. There are several possible

cases:

1. Revocation of one or more role attributes of a public

domain user.

2. Revocation of a public domain user which is

equivalent to revoking all of that user’s attributes. These

operations are done by the AA that the user belongs to,

where the actual computations can be delegated to the

server to improve efficiency.

3. Revocation of a personal domain user’s access

privileges.

4. Revocation of a personal domain user. These can be

initiated through the PHR owner’s client application in a

similar way.

.

3.5 Policy updates

A PHR owner can update his sharing policy for an

existing PHR document by updating the attributes (or

access policy) in the ciphertext. The supported

operations include add/delete/modify, which can be

done by the server on behalf of the user.

3.6 Break - glass

When any emergency happens, the regular access

policies may no longer be applicable. To handle this

situation, break-glass access is required to access the

victim’s PHR. In our framework, every owner’s PHR

access right is also delegated to an emergency

department (ED) and to prevent from abuse of break-

glass method, the emergency staff need to contact the

ED to verify her identity and the emergency situation,

and obtain the temporary read keys. After the

emergency is over, the patient then can revoke the

emergent access via the ED.

4. System architecture

The system architecture is depicted in the following

diagram.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

Fig.2: System Architecture

5. Algorithm and encryption standard used

for encrypting PHR’s- Rijndael Managed

The algorithm used for the encryption is Rijndael

Managed. We use Rijndael Managed with 256 bits key

and 256 bits block size. Longer key/IV lengths provide

better security and they will be slow. In the world of

encryption, the slower, the better and more difficult to

crack. The default for Rijndael Managed is 265 bits key

and 128 bits block size. The Block Size property

determines the IV (Initialization Vector) size. MSDN

says — the classes that derive from the Symmetric

Algorithm class use a chaining mode called cipher block

chaining (CBC), which requires a key and an

initialization vector to perform cryptographic

transformations on data. To decrypt data that was

encrypted using one of the Symmetric Algorithm

classes, you must set the Key property and IV property

to the same values that were used for encryption. This

algorithm independent of the key (i.e) it is not key

dependent. We use rijndael managed algorithm because

most of the other encryption standards are used only for

encrypting a single string at a time whereas this

algorithm standard is useful in encrypting a entire file at

a time.

SETUP: Initially before commencing the encryption

process the primary work is to check whether the file

exist and is empty. Then it verifies whether the owner

is null or not.

 Inputs: file & owner

If(input !=NULL)

 {

 Keygen();

 }

KEY GENERATION: The algorithm used over here

for key generation is rijndael managed. The size of

the public which is generated over here is of 256 bits.

This key is generated upon the request of the user.

 }

 Else

 Return;

KEY ISSUE: The public key is generated and issues

here to the user based upon his request.

ENCRYPTION:

 Inputs: (file, public key(Pk), owner name)

{

Encrypt()

 {

The file before encryption can be of any form i.e

word, PDF, html etc.

 File �byte array;

 Byte array � blob form(image format);

 storeDB();

}

}

DECRYPTION: The initial step of decryption

process is to validate the users request for the correct

attributes.

If (attribute==TRUE)

 {

 Secretkeygen();

Inputs:(public key(Pk),secret key(Sk),

owners name, blob name)

 Decrypt()

 {

 Blob form � byte array;

 Byte array � string(file);

 [reconstruction of code]

 }

Downloadfile();

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

5.1 Steps used in encryption process

The inputs needed to begin the encryption process of the

PHR file are, the file, owner’s name and its

corresponding public key. This public key is generated

in the key generation function. Initially it checks

whether the file exists and is empty. The commencing

step of encryption is to convert the file into byte array

.Byte array is a hexadecimal machine understandable

form.(we do this conversion because the byte array

form is easy for transfer of information over the

network).But byte array as such cannot be stored in the

database so we convert the byte array to its image

format called BLOB(binary large object)Then it is

stored in the database on the cloud server along with the

secret key which is generated. We prefer the byte array

format because since it is in the hexadecimal form even

though the information is hacked and obtain from the

semitrusted server it cannot be read or understood as it

is in the intangible form. Thus we ensure security at its

root level.

5.2 Steps used in decrypting process

The inputs needed for commencing the decrypting

process are the users public key, corresponding secret

key’s, owners name and the image file name. The secret

key’s which they provide here are issued by the

appropriate attribute authority. The owner itself acts are

an attribute authority in care of personal domain, where

as there are other attributes in case of public domain.

The process is the file is initially retrieved

from the database. Then the retrieved file from the

database is in the image form of byte array. It is then

converted back from byte array to its corresponding

form i.e. either a word or PDF or a html file. This

conversion is necessary because the byte array is not a

human understandable format. The file is then

downloaded for the users need.

6. Conclusion

In this paper, we have proposed a promising framework

of secure sharing of personal health records in cloud

computing. Considering partially trustworthy cloud

servers, we conclude that to fully realize the patient-

centric concept, patients shall have complete control of

their own privacy through encrypting their PHR files to

allow fine-grained access in a tight secure manner. The

framework addresses the unique challenges brought by

multiple PHR owners and users, in that we greatly

reduce the complexity of key management while

enhance the privacy guarantees in both the public and

private domains on compared with previous works. We

utilize the concept of ABE and rijndael managed

encryption standard to encrypt the PHR data, so that

patients can allow access not only to personal users, but

also various users from public domains with different

professional roles, qualifications, and affiliations.

Furthermore, we enhance an existing MA-ABE scheme

to handle efficient and on-demand user revocation, and

prove its security. Through implementation and

simulation, we propose that our solution is inevitably

secure and efficient.

References

[1] “Scalable and Secure Sharing of Personal Health Records

in Cloud Computing Using Attribute-Based Encryption”

Ming Li, Member, IEEE, Shucheng Yu, Member, IEEE,

Yao Zheng, Student Member, IEEE, Kui Ren, Senior

Member, IEEE, and Wenjing Lou, Senior Member.jan

2013.

[2] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure,

Scalable,and Fine-Grained Data Access Control in Cloud

Computing,”Proc. IEEE INFOCOM ’10, 2010.

[3] “The Health Insurance Portability and

AccountabilityAct,”http://www.cms.hhs.gov/HIPAAGenIn

fo/01_Overview.asp, 2012.

[4] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient

Controlled Encryption: Ensuring Privacy of Electronic

Medical Records,” Proc. ACM Workshop Cloud

Computing Security(CCSW ’09), pp. 103-114, 2009.

[5] H. Lo¨ hr, A.-R. Sadeghi, and M. Winandy, “Securing the

E-Health Cloud,” Proc. First ACM Int’l Health Informatics

Symp. (IHI ’10), pp. 220-229, 2010.

[6] “Google, Microsoft Say Hipaa Stimulus Rule

Doesn’tApplytoThem,http://www.ihealthbeat.org/Articles/

2009/4/8/, 2012. (CCSW ’09), pp. 103-114, 2009.

[7] C. Dong, G. Russello, and N. Dulay, “Shared and

Searchable Encrypted Data for Untrusted Servers,” J.

Computer Security,vol. 19, pp. 367-397, 2010.

[8] M. Li, W. Lou, and K. Ren, “Data Security and

PrivacyinWirelessBodyAreaNetworks,”IEEEWireless

Comm .Magazine ,vol.17,no. 1, pp. 51-58, Feb. 2010.

[9] S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-

Based Access Control in Social Networks with

EfficientRevocation,” Proc. ACM Symp. Information,

Computer and Comm. Security (ASIACCS), Mar.2011.

